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A model is proposed for external heat transfer in infiltrated fixed granular 
beds. The model is analyzed to derive simple equations for calculation of the 
heat-transfer coefficient. 

Heat transfer in infiltrated fixed granularbeds is of considerable practical interest 
in connection with problems of chemical engineering, the drying of dispersed materials, heat 
treatment of parts in layers of a dispersed heat-transfer agent, rock thermophysics, power 
engineering, and many other subjects. It therefore continually draws the attention of inves- 
tigators [1-7]. 

Several models ~ave been proposed to describe heat transfer in such systems. These 
models can be tentatively divided into two groups: one-zone models [i, 3, 5, 6], presuming 
constant porosity over the entire bed of dispersed material; two-zone models, which 
include a high-porosity zone near the heat-transfer surface [2; 4, 7]. It should be noted 
that the existing schemes are based on key assumptions which are not alwaysjustified. This 
shortcoming is due to the lack of a general physical theory of disperse systems. On the 
other hand, there are also no adequately substantiated, simple, and reliable engineering 
methods of calculating heat transfer in such systems which could indicate the conditions under 
which different models of heat transfer could be used. The two-zone model proposed here for 
steady-state heat transfer between a surface and an infiltrated disperse bed is analyzed in 
just such acontext. 

The model (Fig. i) is based on the following assumptions: i) heat is removed from the 
bed by the filtered gas; 2) the conductive component of heat flow in the direction of the gas 
flow is ignored; 3) a gas film of the effective thickness lo = md* is located near the heat- 
transfer surface; 4) the thermal conductivity of the gas film (in the direction normal to the 
heat-transfer surface) is taken as the sum of the conductive and convective components: Xf = 
Xf c + ncfofud/eo. 

The mathematical formulation of the problem of steady-state heat transfer between a sur- 
face and infiltrated disperse bed has the form: 

plane surface 

a2~ Pe Z ,a,os 
a~ 2 % a,l 

aP 

with the boundary conditions 

=o, 0~< ~ < ~_o 
( l )  

o~(% o ) = I ;  %(0, ~)=o~(o, ~)=o; ao~o], ]) __o; 

ao~ (% ~o!.. = ~ ao~ (% ~o) , o~ (% ~o) --, o, (% ~o); (2) 
a~ a~ 

*It was shown in [7, 8] that with a specified temperature of the heat-transfer surface, the 
presence of the high-porosity zone can be accounted for by introducing a third-order boundary 
condition if this zone has a high thermal resistance. 
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Fig. i. Heat-transfer model: !) heat-transfer sur- 
face; 2) gas film; 3) disperse infiltrated bed; 4) 
wall of unit. 

cylindrical surface 

OzOj i~ 1 
a~ 2 ~ 

azo, I 

with the boundary conditions 

O0, p e ~  a O ~ = o ,  ~ < ~ , , - F ~ . o ,  
a~ eo &l 

ao~ Pe, ao~ _ 0, ~ + ~o < ~ <-~ 1 
a~ an 

(3) 

o, (n, ~,~) = ]; o~ (o, ~) = o, (o, ~) = o;. ao, (n, 1) = o; 

6~ (4) 
ao: (n, ~o + ~o) = ~ ao~ (n, ~.~ + ~0) ; o/(~, ~ + ~o) = o~ (n, L + ~o). 

a~- a~ 

As can be seen from Eqs. (1)-(4), the dimensionless temperatures in both zones are func- 
tions of the following parameters: Pc, X, Co, ~o (plane surface); Pc, X, Eo, ~o, ~a (cylindri- 
cal surface). To determine the thermal conductivity and the thickness of the gas interlayer, 
we used formulas from [9-11], respectively: 

~q = ~} --[- O,O061plcpd, 
~,~ = ~o + 0,19scjud, (5) 

I o = 0,1d. 

Systems (1)-(2) and (3)-(4) were solved numerically by the establishment method, with 
the Use of a stable implicit finite-difference scheme [12]. The solution allowed us to deter- 
mine the temperature field in both zones and then calculate the heat-transfer coefficients: 

, , <  

Nuto t 
q--d / ~ ' T o  - -  "qd / 

= - ~ j  inT _ T  ~ ; N u ~ =  (T~--To); = )~I 

?w--? 

7a N'7., = ~ / (T~, - -  T~ (x,  R)); 

(6) 

average 

local 

where the heat flux q was �9 from the formulas 

Zs (Tw - -  To) OOf (rl, O) q= 
R a[ 

xs (T,,, - -  To) O0~ (n, ~)  q==--- 

for the plane surface and 

(7) 

(8) 

for the cyllndrlcal surface. 
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Fig. 2. Dependence of the temperature averaged over 
the cross section ~ = const on the dimensionless longi- 
tudinal coordinate: i) Pe = 3158; 2) 31.6; 3) 1.05 
(T w = 100~ To = 20=C; ~o = 1.17"i0-~; ~a = 0.i; X = 
4.62). 

We determined the mean values q by integrating Eq. (8), and we similarly calculated the mean 
temperatures T and Ts(X , R). 

Figures 2-4 show profiles of temperature averaged over the cross section q = const and 
the local and mean heat-transfer coefficients. It was established that at Pe > i00, the 
temperature @s(X, r)/x=cons t is nearly independent of the longitudinal coordinate (Fig. 2). 
In accordance with this, at Pe > i00 the heat-transfer coefficients found from the different 
formulas nearly coincide (Figs. 3 and 4). Appreciable nonuniformity of the temperature 
Ts(x , r)/x=cons t develops along the longitudinal coordinate at small Pe (see Fig. 2), so a dif- 
ference appears between the heat-transfer coefficients calculated from the above formulas 
(Figs. 3 and 4). An increase in Pe is also accompanied by convergence of the heat-transfer 
coefficients for the plane and cylindrical surfaces, with these coefficients coinciding at 
Pe > 500 (~a = 0.I) and Pe > i00 (~a = 0.3). 

Equations (i) and (3) can be simplified considerably if we do not take into account the 
change in temperatures along the longitudinal coordinate and examine the problem of heat 
transfer in a unidimensional formulation: 

for the plane surface 

dzOt Pe L 0~=0, 0 ~ < ~ o ,  (9) 
d~ z ~o 

0! (0) = 1; 

for the cylindrical surface 

d~O! 

dzOs Pe 0~=0, ~ o < ~ 1 ;  
d~ 2 

dO~(l) = O; dOy(~o! . . . . .  ~ dO~(~) 0~(~o) = 0~(~o); 
d~. d~ d~ 

(lO) 

_ _ _ [  1 dO ! Pe ~" , 0 i=0 ,  ~_~<~-~ -1 -~o ,  
d~ eo 

dzO.~ 1 dO~ 
"t- Pe 0~=0, ~,~+~o-< ~ 1; 

0 i (~)=1;  dO.(l) =0; dOf(~.+~) = ) ,  dO~(~q-~) ,. (12) 

o.f ( ~ +  ~) =-o~ ( ~ +  ~). 

(Ii) 

As can be seen, the change from Eqs. (1)-(4) to unidimensional equations (9)-(12) is made by 
means of the substitutions ~ef/~ + ef and ~es/~n ~ 0 s and is obviously valid at high values 
of Pc, when ~e/~ >> ~e/~q. 

The external heat-transfer coefficient in the unidimensional case is determined by the 
relations 

Nu= d dTj(O) 
T s ( R ) - - T  w dy (13) 
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Fig. 3. Dependence of the local heat-transfer coef- 
ficients on the dimensionless longitudinal coordinate: 
i) Nu,, Nu~ (Pc = 3158); 2) Nu~, Nu~ (Pc = 31.6); 3, 
4) Nu~ and Nus (Pc = 1.05); ~o = 1.17"10-s; ~a = 
= 0.i; A = 4.62. 

(plane surface), 

(cylindrical surface). 

Equations (9), (I0) and (ii), 

N u =  d dT s (a) 
T~ (R) -- T~ dr 

(12) are easily solved analytically. This allows us s 
establish the following expressions for the dimensionless heat-transfer coefficients: 

p l a n e  s u r f a c e :  

d 
Nu- -  

c y l i n d r i c a l  s u r f a c e  

([ - -  %s) (e 2s-(s+t) ~~ e ('+m~ + (f + as) (d'-!)  ~~ e 2`-<'-rn~ . 

4e s -  2ch t~o ( e2s-sL + eS~') - -  - -  2~,s sh [~ (e 2'-'~~ -- e '~~ 

(14) 

(15) 

N u =  d fs~* 11 ([~) C]-- K~ ( ~ )  C2 
R l--s~*C ' (16) 

where ~* = ~a + to; C, = %Sy + fYo; Ca = XS8 + fSo; C = %S[lo(f~a)y �9 Ko(f~a)~] § f[lo(f~a)- 
Yo + Ko(f~a)8o]; Y=--I,(s)K1(s~*)Ko(fs + Kt(s)It(s~*)Ko(f~*); Yo = Ii(s)Ko(s~*)K,(f~*) + 
K,(s)Io(s~e)g,(fs*);<8 = i=(s)K,(s~*)Io(f~*) -- Kt(s)I,(s~*)Io(f~*); 8o = I~(s)Ko(s~*)l, 
(~*) + K~(s)Io(s~e)It(f~*). 

For high values of Pe at which the unidimensional approximation is also valid, Eqs. (15) 
and (16) are simplified considerably and take the form: 

N u = ~ - -  (15') 
R l+Xs~o 

(plane surface), 

R l+%~0sK* (16') 

(cylindrical surface) (K* = K1(s~*)/Ko(s~*)). 

It should be noted that at K* + 1 (flat heat exchanger), Eq. (161 ) changes into Eq. (15'). 
Equations (151 ) and (16 ~) show that heat transfer in a fixed infiltrated bed is determined by 
the thermal resistance both of the gas film and of the disperse bed itself. The rate of heat 
transfer on the cylindrical sensor also depends on its diameter. 

Figure 4 shows curves constructed from Eqs. (15')-(16'). It can be seen that for large 
Pe, the heat-transfer coefficients calculated from two-dimensional model (1)-(4) and unidi ~ 
mensional formulas (15) and (16) nearly coincide (at Pe > 500 for the plane surface and Pe > 
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F i g .  4. Dependence of  the d imens ion less  h e a t - t r a n s f e r  c o e f f i c i -  
en ts  on the number Pe (T w -- 100~ To -- 20~ ~o = 1 .17"10-3 ;  

= 4.62): i, I') Nu2 and Nuto t from the two-dimensional model; 
2) Nu from (15); 3) Nu from (15'); 4, 4') Nu2 and N~to t from the 
two-dimensional model; 5) Nu from (16); 6) Nu from (16'); a) 
plane heat-transfer surface; b) cylindrical heat-transfer sur- 
face ($~ = 0.i). 

i00 for the cylindrical surface). The results of calculations with "exact" formulas (15) and 
(16) coincide with the results from approximate formulas (15') and (16') at Pe > i0 and Pe > 
i00 for the plane and cylindrical surfaces, respectively. The cases Pe > 500 for plane heat- 
transfer surfaces and Pe > i00 for cylindrical surfaces embrace a fairly broad range of prac- 
tically important systems with a fixed infiltrated bed of solid particles, and experimental 
data on heat transfer in these cases can be analyzed on the basis of Eqs. (15') and (16'). 

NOTATION 

a, radius of cylindrical heat-transfer surface; c, heat capacity; d, particle diameter; 
f = P~e%/eo; H, length of heat-transfer surface; Io, I,, modified O-th and first order Bessel 
functions of the first kind; Ko, K,, modified O-th and first order Bessel functions of the 
second kind (MacDonald functions); m, n, dimensionless coefficients; lo, thickness of the gas 
film; q, heat flux; r, y, transverse coordinates for the plane and cylindrical problems; R, 
width_(or radius) of the disperse bed; s = P~e; T, temperature; To, temperature of incoming 
gas; T, mean (for two zones) temperature at the outlet (x = H); u, filtration velocity; x, 
longitudinal coordinate (coincident with the direction of the gas flow); ~, heat-transfer 
coefficient; ~o, porosity of bed; ~ = y/R (plane); ~ = r/R (cylinder); ~a = a/R; ~o = lo/R; 
n = x/H; 6 = (T --To)/(Tw-- To), dimensionless temperature; I = Is/lf; if c, molecular thermal 
conductivity of the gas; I~ , effective thermal conductivity of the disperse bed at u = 0; p, 
density; Pe = cfpfuR2/(Hls), Peclet number; Nu = ed/If, Nusselt number. Indices: f, gas; s, 
particles; w, heat-transfer surface. 
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EXPERIMENTAL STUDY OF THE TRANSIENT REGIME IN ATHERMOPILE WITH 
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Experiments have shown that additional heat removal makes it possible to eliminate 
overheating of the leg of a thermopile and significantly increase the speed of its 
response. A description is given of the experimental method used. 

It was shown in [i] that the use of additional removal of heat from the lateral surface 
of the leg of a thermopile makes it possible to improve the dynamic characteristics of the 
latter. 

The thermal scheme of a thermopile may be modified differently than in [I], such as by 
removing heat from the cross section of the leg [2]. Some results of study of such thermo- 
piles were reported in [3]. 

Here, we generalize results of an experimental study of a transient in cooling thermo- 
piles both with additional heat removal from the cross section and with the conventional 
design (with heat removal only from the end of the leg). In making the test thermocouples, 
we used legs with a current height of 4.6 and 8 mm and a diameter of 3 and 2 mm. 

The results reported here were obtained from testing thermopiles consisting of several 
thermocouples. This is in contrast to those studies in [4, 5], which consisted of a single 
thermocouple. 

The unit used in the tests consisted of the radiators of the hot junctions i, two thermo- 
piles 2, and the object being cooled 3. The cooled object was a copper plate. The heat 
capacity of the plate was roughly five times greater than the heat capacity of the switching 
elements. Flowing water served as the heat carrier in the radiators and in the additional 
cooling device 4. 

Temperature was measured with copper--constantin thermocouples attached to the center of 
mass of the cooled object I, to the heat-absorbing II and heat-emitting III junctions, to the 
additional cooling device or to a point corresponding to its position in a conventional thermo- 
pile, and to two points over the height of the leg V. 

The measurement thermocouples on the junctions and in the additional cooling element 
were soldered in an opening having a diameter twice as great as the diameter d of the thermo- 
couple electrode, while the measurement thermocouple of the leg was glued into a hole having 
a depth equal to roughly half the cross section of the leg. The diameter of the electrode 
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